Induction of Oyster Tetraploid Founders to Address the Triploid Seed Production for the Gulf Oyster Industry

Huiping Yang

Fisheries and Aquatic Sciences,
School of Forest Resources and Conservation,
IFAS, University of Florida
7922 NW 71th street, Gainesville, Florida 32653

Email: <u>huipingyang@ufl.edu</u>;

Phone: 352-294-0671, Cell: 225-936-5549

Acknowledgements

The Gulf States Marine Fisheries Commission (GSMFC)

Industry organizations

- Florida Shellfish Aquaculture Association
- Cedar Key Aquaculture Association

Industry collaborating farms

- Southern Cross Farm, Cedar Key, FL
- Bay Shellfish Inc., Terra Ceia, FL
- Clamtastic Seafood Inc., Cedar Key, FL
- Cedar Key Seafarms, Cedar Key, FL
- Northwest Gulf Seafood Farms, Wakulla, FL
- Mr. Bill Lartz's farm, Alligator Harbor, FL
- Pensacola Oyster Company, Pensacola, FL
- Oyster Mom, Inc., Wakulla, FL
- UF/IFAS shellfish Extension team in Cedar Key, FI
- Wakulla Environmental Institute
- Johnny's farm

Graduate/undergraduate students, and staff

- Natalie Simon
- Erangi Henkeenda
- Yangqing Zeng

- Cher Nicholson
- August J Planmann
- Anthony Boullosa

- Keegan Kelly
- Jayme Yee

Fishery landing of eastern oysters in the Gulf region account for 85% of national total in 2011 (NMFS 2012)

Sources: (1) Anson K., Arnold W., Banks P., Berrigan M., Pollack J., Randall B., and Reed D. (2011). *Gulf of Mexico, Eastern oyster* Stennis Space Center, MS: NOAA National Coastal Data Development Center. Retreived on July 21, 2011 from http://gulfatlas.noaa.gov/ (2) FAO Fisheries and Aquaculture Department. (2011, November 14). *FAO FishFinder*. Retrieved on July 22, 2011 from http://www.fao.org/fishery/fishfinder/en

Oyster fishery landing (catch of wild oysters) has been decreasing since 2012 in Florida (mtfwc.com). Therefore, oyster aquaculture is increasing to meet the seafood market needs

Oyster Aquaculture in the Gulf region - Florida Industry

Florida has established infrastructure for shellfish farming

Hatchery: 9 list "hatchery" + 2 new this year

Nursery: 31

Growout: ~300

Based on the FDACS data in 2018

Oyster: 92.03 Acres

Oyster and clam: 380.49 Acres

Hard clam: 847.2 Acres

Triploid Oyster are Preferred by the Oyster Farms

Tetraploids are Needed

for Commercial 100% triploid seed production. $2n \times 4n \rightarrow 100\%$ 3n

Flow Chart for Oyster Tetraploid Production

Triploid Production

by (2n♀ x 2n♂) plus inhibition of polar body 1 (PB1) or polar body 2 (PB2)

Tetraploid Founder Production

by (3n♀ x 2n♂) plus PB 1 inhibition

Tetraploid Number Expansion

(3n♀ x 2n♂) plus PB 1 inhibition (2n♀ x 4n♂) plus PB 2 inhibition (4n♀ x 4n♂) with no PB inhibition

Tetraploid Breeding Populations

originated from different geographical populations

Triploids were produced in 2017 and 2018

Broodstock were collected from different locations in Florida

Chemically Induced Triploid Seed harvested in three groups

Labelling	Spawning Date	Broodstock source	Seed number (estimated)	Triploid (%) (Date to test)	
2017CK1	April 5, 2017	Cedar Key	~30,000	38 (06/08/2017)	
2017WA1	May 4, 2017	Wakulla	~20,000	57 (06/28/2017)	
2017CK2	May 30, 2017	Cedar Key	15,525	53 (07/19/2017)	

2018 spawning season – Screening triploids

Triploid Occurrence and Female Number

	Total Oyster	Confirmed 3N	% 3N	3N – no gonad	3n Female	2n-Female	2n-Male
	2017CK1 grou						
	1500	840	56%	835	5	365	209
	2017CK2 grou	ıp: March 19	, 2018 to May	25, 2018 (7 dd	ays)		
	992	630	63.5%	607	23	101	284
	2017CK1 group: March 16, 2018 to May 25, 2019 (11 days) 1500 840 56% 835 5 2017CK2 group: March 19, 2018 to May 25, 2018 (7 days) 992 630 63.5% 607 23 2017WA group: March 28, 2018 to May 14, 2018 (13 days) 1842 1142 62% 1128 14						
	1842	1142	62%	1128	14	226	463
Total	4334	2612	60%		41	692	956

3n female % = 41/2612 = 1.57% 2n female % = 692/1648 = 42%

Oocyte production from 3n females (1-year-old)

15 Females: 100 - 1,000

4 Females: 1001 - 10,000

10 Females: 10,001 – 100,000

6 Females: 100,001 - 500,000 oocytes

3 Females: 500,001 - 1,000,000 oocytes

3 Females: 1-1.8 million

Oocyte number from 3n females

Comparison of Diploid and Triploid Females

Triploid sizes vs. Diploids

	Group	Location	Female		Male		Measures	T-test (3n vs 2n)
	Огоир	Location	3N	2N	3N	2N	Wicasarcs	
3/27/2018 Friday 2017ck1			2	26	120	16	Number	Total = 164
			82.63 ± 0.85	87.32 ± 9.24	88.59 ± 8.12	87.70 ± 9.50	Height (mm)	0.2323
	2017ck1	Cedar key	54.41 ± 8.24	52.13 ± 5.81	55.56 ± 5.39	53.82 ± 4.92	Length (mm)	0.0034
			24.64 ± 1.24	23.19 ± 3.04	25.13 ± 3.37	23.35 ± 4.27	Width (mm)	0.0042
			50.6 ± 7.78	52.32 ± 12.23	62.51 ± 11.87	57.04 ± 17.79	Body weight (g)	0.0009
Date	Group	Female Male Dup Location		ale	Measures	T-test (3n vs 2n)		
Date	Date Group	Location	3N	2N	3N	2N	Wiedsures	
4/6/2018 2017W (5/4/201		Cedar key	0	25	76	29	Number	TOTAL = 130
			NA	65.96 ± 8.93	71.74 ± 10.10	64.76 ± 9.05	Height (mm)	0.0002
	2017WA		NA	46.72 ± 4.84	51.73 ± 7.37	47.77 ± 6.06	Length (mm)	0.0001
	(5/4/2017)		NA	23.28 ± 3.28	24.84 ± 4.55	21.06 ± 3.31	Width (mm)	0.0001
			NA	46.63 ± 10.23	56.23 ± 17.31	38.27 ± 9.89	Body weight (g)	<0.0001
		Location	Female		Male			T-test (3n vs 2n)
Date Group	Group	oup Location	2N	3N	2n	3n		P values (2n vs 3n)
			24	8	110	162	TOTAL = 304	
			62.83 ± 7.67	62.65 ± 5.02	64.94 ± 9.26	64.60 ± 1.32	Height (mm)	0.9618
5/8/2018	2017CK2	Wakulla	41.91 ± 4.77	42.96 ± 2.11	42.37 ± 4.24	42.32 ± 5.07	Length (mm)	0.9047
			21.94 ± 3.17	22.29 ± 1.98	21.71 ± 2.70	21.40 ± 2.57	Width (mm)	0.3305
			23.9 ± 7.23	24.4 ± 3.98	25.83 ± 8.29	25.58 ± 9.49	Weight (g)	0.9675

Analysis of 3n "male" gonadal sample n = 186

Challenges and Solutions I:

limited availability of oocytes from triploid females

- Only very few individual triploids produce a few oocytes (Wang et al. 2002, Gong et al. 2004). For example: 1 out of 1,600 triploid eastern oysters had a few oocytes (Supan 2000).
- Our data: 1.57%; 100 1,800,000 (year-1 triploids)

Further Improvement:

- Use of older triploids
- Conditioning of triploids for gonad enhancement

Challenges and Solutions II:

Poor survival of induced tetraploid larvae

- For Pacific oysters, the survival of putative tetraploid larvae was reported as 0 in two replicates and 0.0739% in one replicate (Guo and Allen 1994).

- Our data: most larvae died out at Day 7-10

Further Solutions

- To increase the egg quality by conditioning the triploids in a temperature controlled system

- To take more care of larval culture

